AN EFFICIENT SYNTHESIS OF THE NAPHTHALENE MOIETY OF NEOCARZINOSTATIN CHROMOPHORE

Kozo Shishido^a, Akitake Yamashita^a, Kou Hiroya^a, Keiichiro Fukumoto^{a*} and Tetsuji Kametani^b ^aPharmaceutical Institute, Tohoku University, Aobayama, Sendai 980, Japan ^bInstitute of Medicinal Chemistry, Hoshi University, Ebara 2-4-41, Shinagawa-ku, Tokyo 142, Japan

Abstract: Methyl 2-hydroxy-7-methoxy-5-methyl-1-naphthalenecarboxylate, the methanolysis product of neocarzinostatin chromophore, was efficiently synthesized from 1-cyano-5-methoxy-3-methylbenzocyclobutene employing an electrocyclic reaction of <u>E-o</u>-guinodimethane as the key step.

Neocarzinostatin chromophore (NCS-chr.), non-protein component of the antitumor antibiotic neocarzinostatin isolated from the culture filtrate of <u>Streptomyces carzinostaticus</u> var. F-41 by Ishida¹, has attracted considerable interest among synthetic organic chemists due to its intriguing structural features.² Our efforts in this area have focussed on construction of the naphthalene moiety (1)³, which was obtained by methanolysis of NCS-chr., possessing four different kinds of functionalities on the naphthalene ring. The chemical objectives of this total synthesis endeavor were not only to establish a novel and practical synthetic route for (1) but also to examine whether the highly selective electrocyclic reaction <u>via</u> <u>E-o</u>-quinodimethane, generated <u>in situ</u> by the thermolysis of 1-alkeny1-1-carbomethoxybenzocyclobutene⁴, for constructing the naphthalene ring system would succeed with fully functionalized benzocyclobutenes, i.e. (5) \rightarrow (6).

The syntheses of (5a,b), the key intermediates in the experimental verification of this approach, start with 1-cyano-5-methoxy-3-methylbenzocyclobutene $(2)^5$, which is readily prepared from 4-methoxy-2-methylbenzaldehyde⁶ by a standard five step sequence in 62 % overall yield. Hydrolysis of (2) and esterification of the resulting carboxylic acid provided the methyl ester (3) in 93 % yield. Treatment of (3) with lithium diisopropylamide (LDA) and acetaldehyde followed by oxidation with the conditions of Swern provided (4) in 86 % yield. Conversion of (4) into the key intermediate (5a) was achieved by treatment with LDA and ethyl chloroformate in 80 % yield. Heating of the enol carbonate (5a) at 180°C for 5 min in <u>o</u>-dichlorobenzene yielded the expected dihydronaphthalene (6a), as a sole product, in 79 % yield. Subsequent treatment with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) in refluxing toluene caused a rapid and clean dehydrogenation to provide the

111

naphthalene (7a) in quantitative yield. Finally, (7a) was converted by alkaline hydrolysis into the desired crystalline (1), mp 109-110°C (lit.³, mp 104-105°C), in 97 % yield. Alternatively, treatment of (4) with ^tbutyldimethylsilyl trifluoromethanesulfonate and triethylamine⁷ provided the silyl enol ether (5b), which was immediately heated at 180°C in <u>o</u>-dichlorobenzene for 1 h followed by oxidation of the resulting (6b) with DDQ in a one-pot operation to give the corresponding naphthalene (7b). Desilylation of the crude (7b) with tetrabutylammonium fluoride proceeded smoothly to afford (1) in 46 % overall yield from (4). The material thus obtained was identical both chromatographically and spectroscopically (¹H nmr, ir, mass) with an authentic sample of

Reagents a, KOH, aq.EtOH; b, AcCl, MeOH; C, LDA, CH₃CHO; d, (COCl)₂, DMSO, NEt₃;
e, LDA, CICO₂Et; f, ^tBu(Me)₂SiOTf, NEt₃; g, 180°C, *o*-dichlorobenzene; h, DDQ;
i, K₂CO₃, aq.MeOH; j, Bu₄NF

The synthesis reported here is a practical method for the preparation of naphthalene moiety of NCS-chr. since it requires eight steps from the literature known benzocyclobutene (2) and proceeds in 51 % (via enol carbonate) overall yield. Of equal importance, this synthesis demonstrates that the electrocyclic process via \underline{E} -o-quinodimethane is also predominant during the thermolyses of highly functionalized benzocyclobutenes.

Acknowledgment: We thank Professors S. Nozoe and G. Kusano of Tohoku University for kindly providing a sample and spectral data of (1).

References and Notes

1) N. Ishida, K. Miyazaki, K. Kumagai, and M. Rikimaru, <u>J. Antibiotics, Ser.</u> <u>A-18</u>, 68 (1965). 2)K. Edo, M. Mizugaki, Y. Koide, H. Seto, K. Furihata, N. Otake, and N. Ishida, <u>Tetrahedron Lett.</u>, **26**, 331 (1985). 3)K. Edo, S. Katamine, F. Kitame, N. Ishida, Y. Koide, G. Kusano, and S. Nozoe, <u>J. Antibiotics</u>, **33**, 347 (1980); Structure revision and the total synthesis, see M. Shibuya, K. Toyooka, and S. Kubota, <u>Tetrahedron Lett.</u>, **25**, 1171 (1984). 4)K. Shishido, H. Komatsu, K. Fukumoto, and T. Kametani, <u>Chem. Lett.</u>, 2117 (1987). 5)T. Kametani, Y. Kato, T. Honda, and K. Fukumoto, <u>J. Chem. Soc.</u>, <u>Perkin</u> <u>Trans. 1</u>, 2001 (1975). 6)4-Methoxy-2-methylbenzaldehyde was easily synthesized from methyl 4-hydroxy-2-methylbenzoate, prepared by the method of Rubottom [G. M. Rubottom and D. S. Krueger, <u>Tetrahedron Lett.</u>, 611 (1977).], <u>via</u> sequential methylation (MeI, K₂CO₃, acetone), reduction (LiAlH₄), and oxidation (PCC) in 88 & overall yield. 7)L. N. Mander and S. P. Sethi, <u>Tetrahedron Lett.</u>, **25**, 3 (1984).